Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Small ; 17(29): e2101508, 2021 07.
Article in English | MEDLINE | ID: covidwho-1263125

ABSTRACT

Abnormal elevated levels of cytokines such as interferon (IFN), interleukin (IL), and tumor necrosis factor (TNF), are considered as one of the prognosis biomarkers for indicating the progression to severe or critical COVID-19. Hence, it is of great significance to develop devices for monitoring their levels in COVID-19 patients, and thus enabling detecting COVID-19 patients that are worsening and to treat them before they become critically ill. Here, an intelligent aptameric dual channel graphene-TWEEN 80 field effect transistor (DGTFET) biosensing device for on-site detection of IFN-γ, TNF-α, and IL-6 within 7 min with limits of detection (LODs) of 476 × 10-15 , 608 × 10-15 , or 611 × 10-15 m respectively in biofluids is presented. Using the customized Android App together with this intelligent device, asymptomatic or mild COVID-19 patients can have a preliminary self-detection of cytokines and get a warning reminder while the condition starts to deteriorate. Also, the device can be fabricated on flexible substrates toward wearable applications for moderate or even critical COVID-19 cases for consistently monitoring cytokines under different deformations. Hence, the intelligent aptameric DGTFET biosensing device is promising to be used for point-of-care applications for monitoring conditions of COVID-19 patients who are in different situations.


Subject(s)
COVID-19 , Graphite , Biomarkers , Cytokine Release Syndrome , Cytokines , Humans , Interleukin-6 , SARS-CoV-2
2.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-1320600

ABSTRACT

A wearable and deformable graphene-based field-effect transistor biosensor is presented that uses aptamer-modified graphene as the conducting channel, which is capable of the sensitive, consistent and time-resolved detection of cytokines in human biofluids. Based on an ultrathin substrate, the biosensor offers a high level of mechanical durability and consistent sensing responses, while conforming to non-planar surfaces such as the human body and withstanding large deformations (e.g., bending and stretching). Moreover, a nonionic surfactant is employed to minimize the nonspecific adsorption of the biosensor, hence enabling cytokine detection (TNF-α and IFN-γ, significant inflammatory cytokines, are used as representatives) in artificial tears (used as a biofluid representative). The experimental results demonstrate that the biosensor very consistently and sensitively detects TNF-α and IFN-γ, with limits of detection down to 2.75 and 2.89 pM, respectively. The biosensor, which undergoes large deformations, can thus potentially provide a consistent and sensitive detection of cytokines in the human body.

SELECTION OF CITATIONS
SEARCH DETAIL